Zoned Namespaces

Use Cases, Standard and Linux Ecosystem

SDC SNIA EMEA 20 | Javier Gonzalez — Principal Software Engineer / R&D Center Lead

SAMSUNG THE NEXT CREATION STARTS HERE

Why do we need a new interface?

® SSDs are already mainstream
» Great performance (Bandwidth / Latency) — Combination of NAND + NVMe
« Easy to deploy - Direct replacement for HDDs
 Acceptable price $/GB

® But, we have 3 recurrent problems:

1. Log-on-log Problem (WAF + OP) 2. Cost Gap with HDDs 3. Multi-tenancy everywhere
- Remove redundancies - Higher bit count (QLC) - Address noisy-neighbor
- Leverage log data structures - Reduce DRAM - Provide QoS

- Reduce OP & WAF
- Enterprise SSD vs. Nearline / High-Cap HDDs - $ per TB y o
Log-Structured Applications (e.g., RocksDB) $2,800 45x %}ﬁ—
$2,600 €SSDs vs. Nearline HDDs “ ‘

$2,400 =0 Enterprise SSDs o
User Space $2,200 =0= Nearline / High-Cap HDDs 35x
Kernel Space ‘ VFS ‘ $2,000

$1,800
$1,600
$1,400
$1,200

$1,000
‘ Block Layer ‘ $800

Host Read / Write / Trim / Hints $600

$400
FTL - Log-Structured Mapping $200

)Addr. Mapping (L2P) Media Mgmt. 1/0 Scheduling 30+ OmOm O OO0l OmOrOome DD D e OO el

Data Placement Garbage Collection | | Metadata Mgmt.

Traditional SSD

Source: IDC; TrendFocus; Wells Fargo Securities, LLC

1.J. Yang, N. Plasson, G. Gillis, N. Talagala, and S. Sundararaman. Don’t stack your

2.log on my log. In 2nd Workshop on Interactions of NVM/Flash with Operating . : ina-disk-dri - -
3.Systems and Workloads (INFLOW), 2014, https://blocksandfiles.com/2019/08/28/nearline-disk-drives-ssd-attack/

THE NEXT CREATION STARTS HERE

https://blocksandfiles.com/2019/08/28/nearline-disk-drives-ssd-attack/

ZNS: Basic Concepts

® Divide LBA address space in fixed size zones ® Zone mapping in device
» Write Constraints
- Write strictly sequentially within a zone (Write Pointer)
- Explicitly reset write pointer .
. . Config. A
* No zone mapping constraints oS-
- Zone physical location transparent to host
- Open design space for different configuration

Zone state machine Config. B | CoC o momelemRT e
« Zone transitions managed by host RS

- Direct commands or boundaries -

« Zone transitions triggered by device
- Notification to host through a exception

LBA mapping in zone

LBAO LBA m-1
b ZSEO: l

2l Explicitly
Empty Open -

ZSIO: _ _ _ _

Implicitly ZSRO: . S~
Open ---> Read el RN
Only Pid S~
7 Write Pointer S~

~ ~

i ~
e i l >~ ~ N
< ~
.
ZSF: Full - - - - ZSLBA+3 ZSLBA ZSLBA - ZSLBA+ZCAP-1
- Strict sequential writes
- Write after reset

THE NEXT CREATION STARTS HERE

ZNS: Advanced Concepts ,

o Append Command
* Implementation of nameless write [1]
» Benefits
- Increase QD in a single zone to improve parallelism
* Host changes
- Changes needed to block allocator in application / file system
- Full reimplementation of LBA-based features in submission path (e.g., snapshotting)

o Write Path o Append Path
* Required QD=1 « QD<=X/ X = #LBAs in zone
- Reminder: No ordering guarantees in NVMe pppend Append
Write Command Commands Commands

(QD1) (SQ) (CQ)_

Write Pointerll o1 Write PointerlJUH §[i g

;- \\ o L
| ZSLBA ZSLBA+1 ZSLBA+2 ZSLBA+3 ZSLBA+4 ZSLBA5 - ZSLBA+ZCAP-1 | ZSLBA ZSLBA+1 ZSLBA+2 ZSLBA+3 ZSLBA+4 ZSLBA‘5 - ZSLBA+ZCAP-1

[1] Y. Zhang, L. P. Arulraj, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. De-indirection for flash-based SSDs with nameless writes. FAST, 2012.

THE NEXT CREATION STARTS HERE

ZNS: Host Responsibilities

ZNS requires changes to the host

* First step: Changes to file systems
- Advantages in log-structured file systems (e.g., F2FS, XFS, ZFS)
- Still best-effort from application perspective
- First important step for adoption

» Second step: Changes to applications
- Only make sense to log-structure applications (e.g., LSM databases such as RocksDB)
- Real benefits in terms of WAF, OP and data movement (GC)
- Need a way to minimize application changes! (Spoiler Alert: xXNVMe)

Address

Garbage Metadata Address Mapping

Collection Mgmt. Mapping

Garbage Metadata
Collection Mgmt.
Host 1/0: Read / Write / Trim / Hints 1/0: Read / Write / Append / Reset / Commit
77 Host

Traditional v Admin: Zone Management

SSD FTL ZNS SSD v
Sect. Mapping (L2P) Media Mgmt. Exception Mgmt. Zone FTL
I/0 Scheduling | | Garbage Collection | | Metadata Mgmt. Zone Mapping (L2P) Media Mgmt. Exception Mgmt.

Over Provisioning I/O Scheduling Zone Meta. Mgmt. Metadata Mgmt.

THE NEXT CREATION STARTS HERE

ZNS Extensions: Zone Random Write Area (ZRWA)

Concept
» Expose the write buffer in front of a zone to the host

Benefits

« Enable in-place updates within ZRWA
- Reduce WAF due to metadata updates
- Aligns with metadata layout of many file systems
- Simplifies recovery (not changes to metadata layout) ! ZRWA T

* Allows writes at QD > 1
- No need changes to host stack (as opposed to append)
- ZRWA size balanced with expected performance

Operation
» Writes are placed into the ZRWA

Explicit
Commit

____In-place Updates Allowed

- No write pointer constraint Read/W"'T/Cf’mm"
* In-place updates aIIo.wed in th.e_ZRWA window ZRWA ZRWA ZRWA ZRWA
« ZRWA can be committed explicitly |commi

- Through dedicated command _—_ _

« ZRWA can be committed implicitly
- When writing over sizeof(ZRWA) t T

LBAO LBA m-1

THE NEXT CREATION STARTS HERE

Implicit
Commit

ZNS Extensions: Simple Copy

Concept
 Offload copy operation to SSD
» Simple copy, because SCSI XCOPY become to complex

Benefits
» Data is moved by the SSD controller

: Zone 1 Zone 2
- No data movement through interconnect (e.g., PCle)
- No CPU cycles used for data movement - -
» Specially relevant for ZNS — host GC

Operation
* Host forms and submits SC command
- Select a list of source LBA ranges
- Select a destination with a single LBA + length
» SSD moves data from sources to destination
- Error model complexity depending on scope Zone 3

o Scope
e Under discussion in NVMe

Simple Copy

THE NEXT CREATION STARTS HERE

ZNS: Archival Use Case

Goal: Reduce TCO # Configuration optimized for cold data
» Reduce WAF » Large zones
« Reduce OP » Semi-immutable per-zone data (all / nothing)
« Reduce DRAM usage * Minimize metadata and mapping tables
« Facilitate consumption of QLC * Need for large QDs (Append or ZRWA)
® Adoption # Architecture properties
o Tiering of cold Storage * Host GC - Less WAF and OP
- Denmark cold: ZNS SSDs » Zone Mapping table > Less DRAM (break 1GB / 1TB)
- Finland cold: High-capacity SMR HDDs 1 zone:1 application
- Mars cold: Tape "~ Jarget low GC -~
» Leverage SMR ecosystem = Zones
- Build on top of same abstractions - Zone 14 | BN
Expanduse-cases e L e
- iarge Erase block
- Large 1/O sizes

- Few “streams”

Zone
Mapping
Metadata

Internal data placement
~ _Device Scheduling

THE NEXT CREATION STARTS HERE

ZNS: I/O Predictability Use Case

Configuration optimized for multi-tenancy
« Zones grouped in “isolation domains”
» Host data placement / stripping
* Host I/O scheduling

Goal: Support multi-tenant workloads
* Inherit archival benefits:
- |WAF, |OP, and |DRAM

» Support QoS policies
- Provide isolation properties across zones # Inherit archival architecture properties

- Enable host I/0 scheduling * Host GC - Less WAF and OP
- Allow more control over I/0O submission / completion « Zone Mapping table > Less DRAM (break 1GB / 1TB)
1 isolation domain:1 application

Manage Stripping
~ _Targetlow GC .~

-
Ve

~” Small Zones
o 8 - Small Erase block
25 S Zone k PZehekE - [Zone2k# i - Variable I/O sizes
R & % - 10s / 100s “streams”
= = nzonenk | MINZGRERREN . WMNZGREREMMN Host data placement
« _Host I/0 Scheduling

~
N
~

THE NEXT CREATION STARTS HERE

Linux Stack: Zoned Block Framework

® Purpose
* Built for SMR drivers
» Add support for write constraints

» Expose to applications through _

block layer User
libzbc

o Kernel Status L T
* Merged in 4.9 Kernel r
. Blocgz(/ drivers Space (e-siogggs%?;?; EFS) am-zoned
- Support in block layer Zoned Block Device Zoned Block Device
- Support in SCSI / ATA
- Support in null_blk Block Layer
* File systems
- F2FS
- Btrfs (patches posted) @@
- ZFS / XFS (ongoing) HW
* Libraries
- libzbc
* Tools
- Ultils-linux, fio

SCSI / ATA Drivers

THE NEXT CREATION STARTS HERE

Linux Stack: Adding ZNS support

® ZNS support in Zoned Block

» Add support ZNS-specific features (kernel & tools)

- Append, ZRWA and Simple Copy

- Async() path for new admin commands

Relax assumptions from SMR
- Conventional zones

- Zone sizes, state transitions, etc.

ow

Zoned FS
(e.g., F2FS)

[FS (e.g., F2FS)|
bIkzoned

Kernel Space

' FSI/O Raw Block
1 1/0

—Blockiayer
NVMe Driver

Admin & I/0

. Framework
] Kernel-Space ZNS extensions
|| User-space ZNS extensions

o /O paths
» Using zoned FS (e.g., F2FS)
- No changes to application
« Using zoned application
- Support in application backend

- Explicit zone management
+ Data placement, sched zone mgmt.

User Space

Posix

xNVMe

Kernel Space

i

t

R/W
sQ/ca

Zone Mgmt (e.g., Reset) ¢ T R/W/A

Hz o Mgt l PW/A

T
I
Adrmin l\ (e.g., Reset) sa/ca

R/W/A

NVMe Driver

THE NEXT CREATION STARTS HERE

xNVMe: Supporting non-block Applications

® xNVMe: Library to enable non-block applications across I/0O backends
« Common API and helpers
 Linux kernel path: psync, libaio, io_uring
« SPDK: User-space in Linux and FreeBSD
» Windows: Future work — new backend required

o Benefits
» Portable API across I/0 backends and OSs (minimal benefit for block devices)
« Common API for new I/O interfaces (Re-write application backend only once)

* File-system semantics on raw devices (block & non-block)
% Fv&mj
[zoned] [libznd e l xnvme] [Iblk] !E{héiﬁ-ow
Read / Write

* No performance impact
A4 \A 7 A4 \4 A4
foctlO: xNVMe API xnvme_buf xnvme_cmd Xnvme_async xnvme_dev
nvmed: info

nvmed read CAPI: xNVMe backends: implementions of the xXNVMe API using OS Support and/or User-space NVMe driver
nvmed:write spdk‘* read
nvmed_aio_queue_submit spdk_*_write
nvmed_aio_read e
nvmed_aio_write

Zone-Aware FS:
Posix Semantics
Read / Write

Zone-Aware FS:

ioctl():
Read
Write
Append
Reset

spdk_* raw_cmd
spdk_*_log

virt_to_phys A\ 4 \ 4
File-systems File-systems File-systems |)2 v)2 v File-systems | L\ 2
Block Device [€—syscalls)| [C API C APl Block Device [€—] syscalls() Block Device [€—]syscalls)] [CAPI C API Block Device [€—] syscalls()
Linux Kernel NVMeDirect SPDK FreeBSD Kernel Linux Kernel NVMeDirect SPDK FreeBSD Kernel
NVMe Driver Hybrid Driver NVMe Driver NVMe Driver NVMe Driver Hybrid Driver NVMe Driver NVMe Driver

THE NEXT CREATION STARTS HERE

o ZNS is a new interface in NVMe
 Builds on top of Namespace Types (e.g., KV)
* Driven by vendors and early customers

M ZNS targets 2 main use-cases

 Archival (original use case)
* 1/O Predictability (ZNS extensions)

® Host needs changes
 Basic functionality builds on top of existing zoned block framework

- Respect write constraints
- Follow zone state machine: Reset->Open->Closed->Full / ->Offline / ->ReadOnly

» Append needs major changes to block allocators in I/O path
- Might work for some file systems / applications, but not for all

« ZRWA gives an alternative to append
- Same functionality, not changes to block allocator in I/O path

® We are building open ecosystem
 Linux stack to be released on TP ratification
- XNVMe, Linux Kernel, tools (e.g., nvme-cli), fio
- RocksDB Backend on xNVMe
» Sponsoring TPs for ZNS extensions in NVMe

THE NEXT CREATION STARTS HERE

THE NEXT CREATION STARTS HERE #
] L/

Placing memory at the forefront of future innovation and creative IT life

