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Why do we need a new interface?

® SSDs are already mainstream
» Great performance (Bandwidth / Latency) — Combination of NAND + NVMe
« Easy to deploy - Direct replacement for HDDs
 Acceptable price $/GB

® But, we have 3 recurrent problems:

1. Log-on-log Problem (WAF + OP) 2. Cost Gap with HDDs 3. Multi-tenancy everywhere
- Remove redundancies - Higher bit count (QLC) - Address noisy-neighbor
- Leverage log data structures - Reduce DRAM - Provide QoS

- Reduce OP & WAF
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Source: IDC; TrendFocus; Wells Fargo Securities, LLC

1.J. Yang, N. Plasson, G. Gillis, N. Talagala, and S. Sundararaman. Don’t stack your

2.log on my log. In 2nd Workshop on Interactions of NVM/Flash with Operating . : ina-disk-dri - -
3.Systems and Workloads (INFLOW), 2014, https://blocksandfiles.com/2019/08/28/nearline-disk-drives-ssd-attack/
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ZNS: Basic Concepts

® Divide LBA address space in fixed size zones ® Zone mapping in device
» Write Constraints
- Write strictly sequentially within a zone (Write Pointer)
- Explicitly reset write pointer .
. . Config. A
* No zone mapping constraints oS-
- Zone physical location transparent to host
- Open design space for different configuration

# Zone state machine Config. B | CoC o momelemRT e
« Zone transitions managed by host RS

- Direct commands or boundaries ....... -

« Zone transitions triggered by device
- Notification to host through a exception

# LBA mapping in zone

LBAO LBA m-1
b ZSEO: l

2l Explicitly
Empty Open -

ZSIO: _ _ _ _

Implicitly ZSRO: . S~
Open --->  Read el RN
Only Pid S~
7 Write Pointer S~

~ ~

i ~
e i l >~ ~ N
< ~
.
ZSF: Full - - - - ZSLBA+3 ZSLBA  ZSLBA -  ZSLBA+ZCAP-1
- Strict sequential writes
- Write after reset
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ZNS: Advanced Concepts ,

o Append Command
* Implementation of nameless write [1]
» Benefits
- Increase QD in a single zone to improve parallelism
* Host changes
- Changes needed to block allocator in application / file system
- Full reimplementation of LBA-based features in submission path (e.g., snapshotting)

o Write Path o Append Path
* Required QD=1 « QD<=X/ X = #LBAs in zone
- Reminder: No ordering guarantees in NVMe pppend  Append
Write Command Commands  Commands

(QD1) (SQ) (CQ)_

Write Pointerll o1 Write PointerlJUH §[ i g

;- \\ o L
| ZSLBA ZSLBA+1 ZSLBA+2 ZSLBA+3 ZSLBA+4 ZSLBA5 -  ZSLBA+ZCAP-1 | ZSLBA ZSLBA+1 ZSLBA+2 ZSLBA+3 ZSLBA+4 ZSLBA‘5 -  ZSLBA+ZCAP-1

[1] Y. Zhang, L. P. Arulraj, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. De-indirection for flash-based SSDs with nameless writes. FAST, 2012.
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ZNS: Host Responsibilities

# ZNS requires changes to the host

* First step: Changes to file systems
- Advantages in log-structured file systems (e.g., F2FS, XFS, ZFS)
- Still best-effort from application perspective
- First important step for adoption

» Second step: Changes to applications
- Only make sense to log-structure applications (e.g., LSM databases such as RocksDB)
- Real benefits in terms of WAF, OP and data movement (GC)
- Need a way to minimize application changes! (Spoiler Alert: xXNVMe)

Address

Garbage Metadata Address Mapping

Collection Mgmt. Mapping

Garbage Metadata
Collection Mgmt.
Host 1/0: Read / Write / Trim / Hints 1/0: Read / Write / Append / Reset / Commit
777777777777777777777777777777777777777777777777777777777777777777777777777777 Host

Traditional v Admin: Zone Management

SSD FTL ZNS SSD v
Sect. Mapping (L2P) Media Mgmt. Exception Mgmt. Zone FTL
I/0 Scheduling | | Garbage Collection | | Metadata Mgmt. Zone Mapping (L2P) Media Mgmt. Exception Mgmt.

Over Provisioning I/O Scheduling Zone Meta. Mgmt. Metadata Mgmt.
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ZNS Extensions: Zone Random Write Area (ZRWA)

# Concept
» Expose the write buffer in front of a zone to the host

# Benefits

« Enable in-place updates within ZRWA
- Reduce WAF due to metadata updates
- Aligns with metadata layout of many file systems
- Simplifies recovery (not changes to metadata layout) ! ZRWA T

* Allows writes at QD > 1
- No need changes to host stack (as opposed to append)
- ZRWA size balanced with expected performance

# Operation
» Writes are placed into the ZRWA

Explicit
Commit

____In-place Updates Allowed

- No write pointer constraint Read/W"'T/Cf’mm"
* In-place updates aIIo.wed in th.e_ZRWA window ZRWA ZRWA ZRWA ZRWA
« ZRWA can be committed explicitly |commi

- Through dedicated command _—_ _

« ZRWA can be committed implicitly
- When writing over sizeof(ZRWA) t T

LBAO LBA m-1
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ZNS Extensions: Simple Copy

# Concept
 Offload copy operation to SSD
» Simple copy, because SCSI XCOPY become to complex

# Benefits
» Data is moved by the SSD controller

: Zone 1 Zone 2
- No data movement through interconnect (e.g., PCle)
- No CPU cycles used for data movement - -
» Specially relevant for ZNS — host GC

# Operation
* Host forms and submits SC command
- Select a list of source LBA ranges
- Select a destination with a single LBA + length
» SSD moves data from sources to destination
- Error model complexity depending on scope Zone 3

o Scope
e Under discussion in NVMe

Simple Copy
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ZNS: Archival Use Case

# Goal: Reduce TCO # Configuration optimized for cold data
» Reduce WAF » Large zones
« Reduce OP » Semi-immutable per-zone data (all / nothing)
« Reduce DRAM usage * Minimize metadata and mapping tables
« Facilitate consumption of QLC * Need for large QDs (Append or ZRWA)
® Adoption # Architecture properties
o Tiering of cold Storage * Host GC - Less WAF and OP
- Denmark cold: ZNS SSDs » Zone Mapping table > Less DRAM (break 1GB / 1TB)
- Finland cold: High-capacity SMR HDDs 1 zone:1 application
- Mars cold: Tape "~ Jarget low GC -~
» Leverage SMR ecosystem =  Zones
- Build on top of same abstractions - Zone 14 | BN
Expanduse-cases e L e
- iarge Erase block
- Large 1/O sizes

- Few “streams”

Zone
Mapping
Metadata

Internal data placement
~ _Device Scheduling

THE NEXT CREATION STARTS HERE



ZNS: I/O Predictability Use Case

# Configuration optimized for multi-tenancy
« Zones grouped in “isolation domains”
» Host data placement / stripping
* Host I/O scheduling

# Goal: Support multi-tenant workloads
* Inherit archival benefits:
- |WAF, |OP, and |DRAM

» Support QoS policies
- Provide isolation properties across zones # Inherit archival architecture properties

- Enable host I/0 scheduling * Host GC - Less WAF and OP
- Allow more control over I/0O submission / completion « Zone Mapping table > Less DRAM (break 1GB / 1TB)
1 isolation domain:1 application

Manage Stripping
~ _Targetlow GC .~

-
Ve

~” Small Zones
o 8 - Small Erase block
25 S Zone k PZehekE - [ Zone2k# i - Variable I/O sizes
R & % - 10s / 100s “streams”
= = nzonenk | MINZGRERREN . WMNZGREREMMN  Host data placement
« _Host I/0 Scheduling

~
N
~
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Linux Stack: Zoned Block Framework

® Purpose
* Built for SMR drivers
» Add support for write constraints

» Expose to applications through _

block layer User
libzbc

o Kernel Status L T
* Merged in 4.9 Kernel r
. Blocgz( / drivers Space (e-siogggs%?;?; EFS) am-zoned
- Support in block layer Zoned Block Device Zoned Block Device
- Support in SCSI / ATA
- Support in null_blk Block Layer
* File systems
- F2FS
- Btrfs (patches posted) @@
- ZFS / XFS (ongoing) HW
* Libraries
- libzbc
* Tools
- Ultils-linux, fio

SCSI / ATA Drivers
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Linux Stack: Adding ZNS support

® ZNS support in Zoned Block

» Add support ZNS-specific features (kernel & tools)

- Append, ZRWA and Simple Copy

- Async() path for new admin commands

Relax assumptions from SMR
- Conventional zones

- Zone sizes, state transitions, etc.

ow

Zoned FS
(e.g., F2FS)

[FS (e.g., F2FS)|
bIkzoned

Kernel Space

' FSI/O  Raw Block
1 1/0

—Blockiayer
NVMe Driver

Admin & I/0

. Framework
] Kernel-Space ZNS extensions
|| User-space ZNS extensions

o /O paths
» Using zoned FS (e.g., F2FS)
- No changes to application
« Using zoned application
- Support in application backend

- Explicit zone management
+ Data placement, sched zone mgmt.

User Space

Posix

xNVMe

Kernel Space

i

t

R/W
sQ/ca

Zone Mgmt (e.g., Reset) ¢ T R/W/A

Hz o Mgt l PW/A

T
I
Adrmin l\ (e.g., Reset) sa/ca

R/W/A

NVMe Driver
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xNVMe: Supporting non-block Applications

® xNVMe: Library to enable non-block applications across I/0O backends
« Common API and helpers
 Linux kernel path: psync, libaio, io_uring
« SPDK: User-space in Linux and FreeBSD
» Windows: Future work — new backend required

o Benefits
» Portable API across I/0 backends and OSs (minimal benefit for block devices)
« Common API for new I/O interfaces (Re-write application backend only once)

* File-system semantics on raw devices (block & non-block)
% Fv&mj
[ zoned ] [ libznd e l xnvme ] [ Iblk ] !E{héiﬁ-ow
Read / Write

* No performance impact
A4 \A 7 A4 \4 A4
foctlO: xNVMe API xnvme_buf xnvme_cmd Xnvme_async xnvme_dev
nvmed: info

nvmed read CAPI: xNVMe backends: implementions of the xXNVMe API using OS Support and/or User-space NVMe driver
nvmed:write spdk‘* read
nvmed_aio_queue_submit spdk_*_write
nvmed_aio_read e
nvmed_aio_write

Zone-Aware FS:
Posix Semantics
Read / Write

Zone-Aware FS:

ioctl():
Read
Write
Append
Reset

spdk_* raw_cmd
spdk_*_log

virt_to_phys A\ 4 \ 4
File-systems File-systems File-systems | )2 v )2 v File-systems | L\ 2
Block Device [€—syscalls)| [ C API C APl Block Device [€—] syscalls() Block Device [€—]syscalls)] [CAPI C API Block Device [€—] syscalls()
Linux Kernel NVMeDirect SPDK FreeBSD Kernel Linux Kernel NVMeDirect SPDK FreeBSD Kernel
NVMe Driver Hybrid Driver NVMe Driver NVMe Driver NVMe Driver Hybrid Driver NVMe Driver NVMe Driver
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o ZNS is a new interface in NVMe
 Builds on top of Namespace Types (e.g., KV)
* Driven by vendors and early customers

M ZNS targets 2 main use-cases

 Archival (original use case)
* 1/O Predictability (ZNS extensions)

® Host needs changes
 Basic functionality builds on top of existing zoned block framework

- Respect write constraints
- Follow zone state machine: Reset->Open->Closed->Full / ->Offline / ->ReadOnly

» Append needs major changes to block allocators in I/O path
- Might work for some file systems / applications, but not for all

« ZRWA gives an alternative to append
- Same functionality, not changes to block allocator in I/O path

® We are building open ecosystem
 Linux stack to be released on TP ratification
- XNVMe, Linux Kernel, tools (e.g., nvme-cli), fio
- RocksDB Backend on xNVMe
» Sponsoring TPs for ZNS extensions in NVMe
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Placing memory at the forefront of future innovation and creative IT life




